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The Use of Pulse Shaping To Control the Photodissociation of a Diatomic Molecule: 
Preventing the Best from Being the Enemy of the Good 
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Previous work has shown that selectivity of product formation in the dissociation of a polyatomic molecule can be enhanced 
through the application of a pair of ultrashort laser pulses separated by a controlled delay. For the practical application 
of this Tannor-Rice scheme for selective photochemistry, the effects of changes in the laser temporal pulse shapes must be 
understood. To this end, we treat here the effects of pulse shaping for the Tannor-Rice scheme as applied to simple diatomic 
molecules. Since the molecular dynamics of diatomic systems are considerably simpler than those for polyatomics, the detailed 
effects of the laser pulses can be easily examined. Two systems of practical interest have been studied: (1) molecular 12, 
and (2) a van der Waals complex of Hg and Ar. Optimal control theory is used to generate a pulse shape which provides 
enhanced reaction yield. Results of constrained optimizations which limit the laser pulses to experimentally achievable shapes 
are also reported. These results demonstrate the importance of pulse shaping in the enhancement of selectivity of product 
formation in a chemical reaction. They also show that achievable approximations to the optimum pulse shape provide valuable 
enhancement of the product yield. 

I. Introduction 
Recent theoretical work has shown that it is, in principle, 

possible to influence the selectivity of product formation in a 
chemical reaction by use of external resonant electric fields which 
modify the molecular dynamics. The approaches proposed fall 
into two categories emphasizing, respectively, the use of time- 
independent and time-dependent control fields. 

Brumer and Shapiro’” have shown that control of product 
selectivity can be achieved if two degenerate exit channel wave 
functions can be made to interfere constructively or destructively, 
as a result of two or more simultaneous coherent excitation routes, 
to the degenerate final states. This control scheme focuses at- 
tention on the properties of eigenstates of the system and its 
implementation requires controlling the phase difference between 
two continuous-wave laser sources driving the different excitation 
routes. 

Tannor and Rice: and Tannor, Kosloff, and Rice6 have shown 
that controlling the duration of propagation of a wavepacket on 
an excited-state electronic potential energy surface, by controlling 
the time delay between pump and dump pulses, can be used to 
selectively influence product formation on the ground-state po- 
tential energy surface. This two-pulse experiment will be refered 
to as the Tannor-Rice scheme for selective photodissociation. 
Rabitz and co -~orke r s ’~  have shown that it is possible to design 
optimally shaped pulses that will guide the evolution of a system 
from a chosen initial state to a selected final state in a specified 
time interval. Their work, which has been applied only to reactions 
on one potential energy surface, has been extended by Kosloff, 
Rice, Gaspard, Tersigni, and Tannorlo to the design of optimally 
shaped pulses that utilize modulation of wavepacket evolution on 
an excited-state potential energy surface to influence the selectivity 
of product formation on the ground-state potential energy surface. 
This control scheme focuses attention on the temporal and spatial 
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evolution of wavepackets on one or more potential energy surfaces. 
In the simplest situation, in which the shaping of the control field 
pulses is forsaken, implementation of this scheme requires the 
development of techniques to control both the temporal separation 
and the relative phases of the pump and dump pulses. The 
achievement of optimal control of the selectivity of product for- 
mation, which will typically involve generation of a pulse with 
complicated spectral content and time signature, requires further 
development of femtosecond pulse shaping technology, as exem- 
plified by the work of Heritage et al.l1-l4 and Warren and co- 
workers. I 5-1 ’ 

With present day technology, the most convenient way to excite 
multiple molecular transitions, simultaneously and coherently, is 
to use ultrashort, transform limited, optical pulses. The wave- 
packets so generated have a particularly simple form in the limit 
that the excitation is of infinitesimal duration; in that limiting 
case the spectral content of the wavepacket spans all states of the 
system connected to the initial state with nonvanishing transition 
moments, and the amplitudes of the states contributing to the 
wavepacket do not depend on the nuclear dynamics. However, 
infinitesimally short laser pulses cannot be generated, and pulses 
shorter than 50 fs are difficult to generate reliably. A 50-fs 
Gaussian pulse has a spectral bandwidth of only 300 cm-’, which 
is not large enough to excite a great number of the states of most 
molecules. Moreover, the amplitudes of the components of the 
typical wavepacket generated by a 50-fs pulse are influenced by 
coupling to nuclear motions with comparable periods, and hence 
so is the evolution of the wavepacket. We must then expect that 
with fixed shape 50-fs pump and dump pulses we will achieve only 
a lower limit to the control of selectivity of product formation. 
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In this paper we address three problems: 
(i) What are the requirements for an experimental demon- 

stration of the two-pulse Tannor-Rice scheme when applied to 
a real reaction? 

(ii) What improvement in product formation is generated when 
optimally shaped pulses replace the fixed shape pump and dump 
pulses used in (i)? 

(iii) Is there a simple approximation to the optimal pulse shape 
found in (ii), one which can be generated with present day 
technology? 

Our approach to problem (i) is to examine the modulation of 
the product yield in the photodissociation of a diatomic molecule 
as a function of the delay between pump and dump pulses. 
Although controlling the amount of product formed in the pho- 
todissociation of a diatomic molecule does not demonstrate the 
enhancement of the formation of a particular reaction product 
selected from a set of possible reaction products, it does depend 
on the same features of the wavepacket dynamics and wavepacket 
interference. The real reactions we have studied are the photo- 
dissociation of the van der Waals molecule HgAr and the pho- 
todissociation of T2. HgAr is very nearly an ideal vehicle with 
which to study the simplest version of the Tannor-Rice scheme 
in that the level spacings are small, so that even 80-fs pump and 
dump pulses can generate marked modulation of the photofrag- 
ment population as a function of pump-dump delay. In contrast, 
I2 has a large enough vibrational frequency that the wavepacket 
generated by a 50-fs pulse has only a few components. In this 
case the use of pump-dump pulse separation to modulate the yield 
of the photofragment reaction leads to small but measurable 
effects. 

Our approach to problem (ii) is to carry out an optimization 
of the pulse shape using the method of Kosloff et a1.I0 It is found 
that the use of optimally shaped pulses in place of fixed shape 
pump and dump pulses increases the photofragmentation yield 
per pulse by many orders of magnitude. The calculated pulses 
shapes are not overwhelmingly complicated, but they are also not 
simple. Were attention to be focused solely on using the optimally 
shaped pulse to control the photofragmentation yield, we would 
generate the classical conundrum of the best being the enemy of 
the good. Aside from verifying our theoretical analysis, it serves 
little purpose to predict that a photofragmentation reaction can 
be efficiently driven by a specially shaped pulse if that shaped 
pulse is too complicated to produce in the laboratory. Accordingly, 
we argue that the use to which we put the calculated optimal pulse 
shape is as important as is its calculation. 

Our approach to problem (iii) is to use the optimally shaped 
pulses found in (ii) to identify the spectral content and durations 
of the principal components of the optimal field. We then con- 
struct simple approximations to the optimally shaped pulses by 
superposing a few Gaussian pulses selected to have spectral content 
and temporal widths which are close to those of the major Fourier 
components of the optimally shaped field. We find that these 
approximations to the optimally shaped pulses suffice to generate 
photofragmentation yields within a factor of 2 of those generated 
by the optimally shaped pulses. Furthermore, we show that those 
enhanced yields are not appreciably degraded by rotational de- 
phasing. 

The calculations described in this paper are for real systems. 
Moreover, these systems have been chosen keeping in mind the 
limitations of current femtosecond laser technology. We have, 
in fact, designed experiments which will test the predictions of 
the calculations reported. 

11. Qualitative Considerations 
As already mentioned, we shall analyze the effectiveness of 

controlling the photofragmentation of HgAr and I2 by altering 
the time delay between pump and dump pulses with fixed 
(Gaussian) shape, and by shaping the pulses. The relevant po- 
tential energy curves for the several electronic states of interest 
in these molecules are shown in Figure 1. 

In keeping with the notion that we are designing real experi- 
ments, we propose initiating each of the photofragmentation re- 

TABLE I: Morse Potential Parametersa 
wet De, electronic 

cm-I cm-1 re, A energy, cm-l ref 
HgAr A state 39.6 369.0 3.38 39183 18 
HgAr C state 112.0 1560.0 2.81 60930 19 

I2 B state 125.69 5168.14 3.0247 15769 22 

'HgAr reduced mass: 33.4 u. l2 reduced mass: 63.5 u. 

I2 X state 214.5 12439.4 2.6663 0 20,21 

actions from an electronically excited state. This choice of initial 
state generates a minor experimental complication in that the 
initial state must be prepared by laser excitation. Both HgAr and 
I2 have transitions in convenient spectral regions which are strong 
enough to saturate with quite modest laser power, so the initial 
(excited) state can have a very large concentration. Our choice 
of initial state also generates a major experimental simplification 
in that it makes possible the monitoring of the reaction yield by 
spontaneous emission, since the products formed are electronically 
excited Hg or I atoms. In the case of photofragmentation of HgAr, 
such a detection scheme is advantageous because of the expected 
large background of ground-state Hg and Ar atoms in the su- 
personic jet in which the van der Waals molecule is formed. In 
the case of photofragmentation of 12, the major gain is that it is 
much easier to detect electronically excited I atoms than 
ground-state I atoms. 

Note that for the I2 system we have selected as the initial state 
a vibrationally excited level. This selection was made so that the 
largest Franck-Condon factors to the X state levels correspond 
to the strongly anharmonic portion of the potential energy curve, 
with the consequence that the vibrational motion is slow enough 
(-400-fs period of motion) to be resolved with typical laser 
technology. The wavelength needed to excite the (B, u' = 34) - (X, u" = 0) transition is also fortuitously near the maximum 
of the B - X electronic absorption spectrum. 

To obtain a qualitative picture of the results to be expected from 
these experiments, we have carried out Wigner swarm calculations 
for the Tannor-Rice pumpdelayed dump pulse photodissociation 
scheme for each of the systems mentioned above. The results are 
shown in Figure 2. Morse potential energy surfaces were used 
for all states involved and the parameters used are displayed in 
Table I. The calculations were carried out by approximating the 
initial wave function as a swarm of classical points with distri- 
butions of initial positions and momenta given by the Wigner 
distribution. The pump pulse is assumed to instantaneously 
transfer that initial distribution of points to the second potential 
energy surface, where they propagate according to classical me- 
chanics. For any given delay, the dump pulse transfers these points 
back to the initial surface. In general, only a fraction of the points 
will have acquired enough kinetic energy on the second potential 
energy surface to dissociate when projected back to the initial 
potential energy surface. The weighted fraction of Wigner swarm 
particles that do in fact dissociate is plotted as a function of pulse 
delay in Figure 2. 

The most significant feature of the calculations displayed in 
Figure 2 is the modulation of the probability of dissociation as 
a function of delay. We note that there is a high probability for 
dissociation (a dissociation window) at  roughly 400-fs intervals 
in both systems. The pattern for I2 has a smaller amplitude of 
modulation than for HgAr due to the extended initial wave 
function used in that system. The results illustrated in Figure 
2 will be used in the following analysis to select parameters for 
the initial laser field in the calculation of the optimal pulse shape. 
That is, from this figure, one can select the appropriate delay 
between short laser pulses so as to enhance the probability of 
dissociation. In addition, transition frequencies can also be 
predicted, since in this model the kinetic energy of the Wigner 
swarm particles is conserved upon transfer between potential 
energy surfaces. 

111. General Theory 
We now briefly outline the optimal control theory approach 

to optical pulse shaping. The details are given in Appendix A. 
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Figure 1. Potential energy surfaces for (a) HgAr and (b) molecular iodine. The double arrows correspond to resonant continuous-wave excitation. 
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Figure 2. Probability of dissociation for (a) HgAr and (b) molecular 
iodine as calculated by a Wigner swarm simulation. 

We will consider the simple chemical model defined by two po- 
tential energy surfaces. One of the surfaces is used to mediate 
the reaction on the other surface. The equation of motion in our 

system is the time-dependent Schriidinger equation (h  = 1 
throughout) 

id,q(Z,r) = I j \k (Z , t )  (a, a/ar)  (3.1) 

In the semiclassical and adiabatic approximation 

and 

Y J =  (k) (3.3) 

The subscript g refers to the “ground”-state potential energy 
surface and u, correspondicgly, ,to the “upper_”-state potential 
energy surface. Of course, Hi = Ti + where Ti = B2/2m is the 
kinetic energy operator and is the corresponding potential 
energy. ~1 is the negative of the transition dipole operator and 
‘ ( t )  represents the amplitude of the classical electric field. 

The first step in our optimal control theory approach is to specify 
the desired physical objectives. As we are interested in the 
ground-state wave function a t  some final time t f ,  we first define 
the objective functional as a projection of the final state of the 
system 

I = <\kfppr> (3.4) 

where B is a projection operator for the selected product and 9r 
is the wave function at  the time tr. 

One of our (chosen) constraints is that the energy of the electric 
field is to be conserved in the optimization process: 
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O(r). In some (every 5-10) steps a totally new field is generated 
from O(r) as in (3.12), but in most steps the conjugate gradient 
method given by Tersigni et al.23 is used for accelerated con- 
vergence. A negative value of X is calculated from (3.14). Apply 
the new field to the system and start the next iteration from (b). 
(f2) For the optimized restricted electricfield Calculate the 

integrals in (B.3) and (B.4) using a negative value of A, calculated 
from (3.14). Apply (B.9) to get a new set of parameters, apply 
the new field to the system, and start the next iteration from (b). 
However, if the change in parameters is “too big”, the change is 
scaled down. 

The problem is assumed to be solved when the specified con- 
vergence criterion is met or when the amount of dissociating 
wavepacket reaches a given value. 

The numerical solution of the time-dependent SchrMinger 
equation is carried out using a short iterative Lanczos propagation 
scheme together with the fast Fourier transform method for 
evaluating the kinetic energy. This scheme is fast and accurate 
and has no difficulty with time-dependent Hami l t~n ians .~~  The 
integration routine has been tested by using two harmonic surfaces 
and a constant electric field, that is 

& ( t )  = k (4.2) 
In that case we have analytic expressions for the amplitude (and 
phase) on each surface. We have found very good agreement 
between numerical and analytical results for k values comparable 
to the parameters used in the calculations to be described below. 

V. Results: Optimal Pulse Shapes 
The model used in the calculations discussed below involves 

two electronic states. The potential energy surface for each state 
is a one-dimensional Morse function taken from the literature (see 
e.g. ref 25 for a review of Morse functions and refs 25 and 26 for 
efficient and accurate methods of calculation). The Morse pa- 
rameters are summarized in Table I. We assume that at  t = 0 
the wave function is an eigenfunction of a specific vibrational state. 

The “target” wave functions are chosen to be complex Gaussian 
wavepackets of the form 

x ( R )  = ( 1) exp(-(R - R a d 2 / 6 R  + ipo(R - Rmn,)) 

(5.1) 

The classical coordinate Rm, and momentum po give the central 
location of x(R)  in phase space. bR gives the spatial spread of 
the wavepacket and Lt is chosen such that it is close to the end 
of the grid while not giving any “waste” of wave function passing 
the grid at  late times in the forward time propagation. 6, is chosen 
such that the width of the wavepacket is of the same order as 
suggested by preliminary calculations with Gaussian laser pulses. 
The final time is also chosen using considerations derived from 
preliminary calculations. po is chosen such that the kinetic energy 
of the wavepacket is of the same order as the dissociation energy. 

The initial guess for the electric field is the sum of two Gaussian 
pulses, each of the form 

&,(t) = Aj exp(-a,(t - cos (wjt + cp/)  (5.2) 

The values of these parameters were selected by analysis of the 
Wigner swarm calculations of section 11. The pulse durations were 
chosen to correspond to those readily achievable experimentally. 

We take p, the negative of the transition dipole operator, to 
be independent of the internuclear distance in our calculations. 
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(27) Mosburg, E. R.; Wilke, M. D. J .  Quant. Spectrosc. Radfat. TransJer 

(28) Brith, M.; Rowe, M. D.; Schnecp, 0.; Stephens, P. J.  Chem. Phys. 
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xoff @ ( t )  dt = E (3.5) 

A second necessary constraint is that the system always satisfy 
the equation of motion in (3.1). These two constraints introduce 
two Lagrange multipliers X and 9, respectively. In analogy with 
9, 9 is a two-component function defined by 

@ =  ( t )  (3.6) 

and the objective functional may be written as 

7 = <q&Pf> + i l t r ( < 9 1 i a ,  - fils> - c.c.) dt + 
10 

A[ xorr&2(t )  dt - E] (3.7) 

where C.C. stands for complex conjugate. In Appendix A we show 
how (3.7) leads to the following coupled sets of equations to be 
solved: 

(3.10) 

A 
1W3) = P W f ) )  (3.1 1 )  

which are further linked by the equation for the optimal field 8 
&(t )  = O(t)/X (3.12) 

where 
o(t) = Im (<#Ulpl&> + <$&l&>) (3’13) 

The Lagrange multiplier X is determined by substituting (3.12) 
into ( 3 3 ,  giving 

X = f ( ( l / E ) l r f @ ( t )  r0 dt)i’2 (3.14) 

In Appendix B we show how the formalism described must be 
modified if we restrict the electric field to a given form, specified 
by a set of parameters to be determined. In particular, we consider 
constraining the form of the electric field to a pair of laser pulses. 
Generalization of the formalism to allow more complex constraints 
is straightforward. 

IV. Numerical Methods 
We now describe an iterative algorithm for the self-consistent 

determination of the optimal &(t) ,  as given by (3.12), subject to 
satisfying the equations of motion for 9 and and also the similar 
algorithm corresponding to the restricted two-pulse electric field. 
The full set of equations to be solved is given in (3.8)-(3.14) and 
also (B.3) for the restricted two-pulse electric field. 

The iterative numerical procedure for calculating the self- 
consistent solution to (3.1 2) has the following steps: 

(a) Make an initial guess for the electric field. 
(b) Integrate the Schriidinger equation 

i(ae/at) = A(t) * ( t )  (4.1) 
forward to final time t f ,  starting from the appropriate initial state 
of the system. 

(c) As specified by eq 3.1 1, apply the projection operator that 
selects the wanted product to 9(tf) ,  and obtain the value of 9(rf). 
This is then regarded as an initial value for the backward 
propagation. 

(d) Propagate 0, as well as 9, backwards in time using the 
Schrtdinger equation for both wave functions (3.8)-(3.9). 

(e) During this propagation calculate the overlap function O(r) 
according to (3.13). 

(fl)  For the fully optimized electricfield An improved field 
is generated by using the previous field and the overlap function, 
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TABLE II: Parameters for HgAr and Iz 
HnAr I, 

time parameters 
initial time (to) 
final time (rf) 
no. of time steps 

grid parameters' 
Rmin 
R,, 
no. of points 

target parameters 
Rant 
6R 
Po 

total energyb 
total energy 
electronic trans moment 

0 
36000 au (87 1.2 fs) 
80001 

3.5 a. (1.9 A) 
20.0 (10.6 A) 
512 

13.0 a. (6.88 A) 
0.5 au (0.14 A2) 
26.36 au (5.18 X 

IO-'* g cm/s) 
0.001 au 
1.9 mJ[,cm2 
3.34 D 

0 
34000 au (822.8 fs) 
80001 

3.73 a,, (1.97 A) 
17.5 a. (9.26 A) 
512 

14.0 a. (7.41 A) 
0.8 au (0.22 A2) 
50.0 au (9.98 X 

lo-'* g cm/s) 
0.001 au 
20 mJ/cm2 
1.0 D2* 

a 1 a,, = 4moh2/(m$) = 0.529 X m is the Bohr radius. is 
actually J:$p I ( r ) )2  dr, that is given here. CGiven the value above, and 
the electronic transition moments below. 

ELECTRIC F I E L D  POWER SPECTRUM 
I 

I " ' " I I  1 

0 100 200  300  400 500  600 19000 20000 21000  22000  23000  24000 
TIME lfs] WAVENUMBER 

Figure 3. Electric fields for HgAr dissociation: (A) initial guess; (B) 
after one iteration; and (C) after 14 iterations. (a)-(c) show the corre- 
sponding power spectra (absolute values). 

Parameters for the I2 and HgAr calculations are given in Table 
11. 

*O*HPAr. We examine first the dissociation of the van der 
Waals molecule HgAr in its excited electronic A state, using the 
higher excited C state as the mediating state as illustrated in Figure 
la. For this system we describe some of the results obtained when 
the full optimization scheme is used, and also the results when 
the restricted electric field, including only two Gaussian pulses, 
is used. 

The initial guess for the electric field is shown in Figure 3A, 
while the field after one iteration is shown in Figure 3B and the 
(partially optimized) field after 14 iterations in Figure 3C. Figure 
4 shows the initial and target wave functions, while Figure 5 shows 
the wave functions at the final time tf corresponding to the electric 
fields in Figure 3A-C. Power spectra corresponding to the electric 
fields in Figure 3A-C are shown in Figure 3a-c. The power 
spectra are the Fourier transforms of the electric fields; note that 

Figure 4. (A) Initial wave function (u = 0), and (B) target wave function. 
Both are numerically squared. 

. 1 4  

. 1 2  , .  

0.06 
0.04 , \  

$ ,  
/,' \, 

0 .02  I '  

10 11 12 1 3  14 1 5  16 
R [ B o h r ]  

Figure 5. (A) Wave function (numerically squared and XlOOO) at final 
time tf given the initial electric field. (B) Wave function (numerically 
squared) at tf given the electric field after first iteration. (C) Wave 
function (numerically squared) at if given the electric field after 14 
iterations. 

0.0008 

0.0006. 
a 
2 0.0004 . 
- 

-0.0008 ' 
0 100 200 300 4 0 0  5 0 0  600 

TIME [fS] 

Figure 6. Simulation of the electric field from Figure 3B by use of three 
Gaussian pulses centered as in Figure 3B and with frequencies from 
Figure 3b. 

Figure 7. Wave functions (numerically squared) at final time, given the 
electric fields: (A) after one iteration (same wave function as in Figure 
5B); (B) the simulated field with three Gaussian pulses (shown in Figure 
6); (C) using only the first two Gaussian pulses from the simulated field; 
and (D) using only the first and last Gaussian pulse from the simulated 
electric field. 

the units have been changed to wavenumbers. 
We also consider a simple approximation to the electric field 

shown in Figure 3B. Three Gaussian pulses are used. The central 
times and widths of these pulses are taken from Figure 3B, while 
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TABLE III: Objective Function Values ((*&Pf)) and Dissociation 
Yield (lEl*&V)12 dR) for HgAr Dissociationa 

iteration no. 
0 
1 
5 
9 
14 
Simull 
Simul2 
Simul3 
Gaussianb 

3.27 X lod 
6.52 X 
9.39 x 10-2 
9.90 x 
1.34 x 10'' 
4.06 X 
4.54 x 10-2 

8.63 X 
4.71 x 10-3 

dissocn yield 
8.96 X IO" 
8.18 X 
1.63 X IO-' 
1.19 X IO-' 
1.68 X IO-' 
7.02 x 
6.04 X 
4.15 x 10-2 
1.51 x IO-' 

('tA*r) 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 

%mull is from the calculation with three Gaussian pulses; Simul2 
with the first two, and Simul3 with the first and last Gaussian pulse 
from the simulated field. bFrom the 47th iteration with the electric 
field restricted to two Gaussian pulses. 

the central frequencies are taken from Figure 3b. The resulting 
wave function with this electric field is shown in Figure 6 along 
with the results using only the first and either one of the last two 
of these Gaussian pulses. The total energy of the electric fields 
in all these calculations is the same. The values of our objective 
function, 7, and the dissociation yield are tabulated with a few 
other intermediate calculations in Table 111. The dissociation 
yield is defined as the amount of the final wave function that has 
passed R = 10 ao: 

Y = J:lUdR)l2 dR (5.3) 

Included in the table are values of ( to show conservation 
of the norm of the wave function. From this table and the figures 
we see that we gain a very large enhancement of our objective 
function as well as of dissociation yield from the first iteration, 
while further iterations only give modest enhancements. Some 
iterations even decrease the amount of dissociation, though the 
value of the objective function increases. We also see that the 
approximation to the partially optimized pulse with three Gaussian 
pulses, as well as the simpler approximation which includes only 
the first and last of these pulses, gives results that are comparable 
to those obtained with the partially optimized pulse. The second 
of the three pulses might well be some "leftover" from the initial 
guess since it apparently does not contribute as much to the 
objective function as does the last dump pulse. 

We now consider the results of calculations where the electric 
field is generated by a sum of two Gaussian fields, as in (5.2). 
We have 10 parameters to optimize: the amplitudes (A.), the 
frequencies (o ), the phases (p,), the widths (aj), and finahy the 
central times (tj) of each pulse. The result after 47 iterations is 
given in the final line of Table 111. By comparison with the other 
results in this table, we see that further optimization of the pa- 
rameters in the two-/three-pulse Gaussian sequence introduced 
will further enhance the value of our objective function, indeed 
almost as much as for later iterations in the full optimization 
scheme. We note that this calculation is started with the same 
initial guess as in the full optimization scheme. By using the result 
after just one iteration there (Simul3) we could probably have 
achieved the present result with a much smaller number of it- 
erations. 

12'12. The initial electric field used is shown in Figure 8A, the 
field after one unconstrained iteration is shown in Figure 8B, and 
the field after 37 iterations is shown in Figure 8C. Figure 9 shows 
the initial wave function and the target wave function. The 
resulting numerically squared wave functions at the final time 
are shown in Figure 10. Power spectra of the electric fields in 
Figure 8 A X  are shown in Figure 8a12 In analogy with the HgAr 
calculations, we have approximated the electric field shown in 
Figure 8C by three Gaussian pulses, the result of which is shown 
in Figure 1 1. As for the HgAr dissociation, we have also made 
three calculations, involving either all three Gaussian pulses or 
the first and either one of the last two pulses. As before, the total 
energy of the pulses has been held constant. The amplitudes of 
the electric fields are, therefore, not the same. The resulting 

ELECTRIC FIELD 

,P A . (BJi 

Figure 8. Electric fields for I2 dissociation: (A) initial guess and (B) after 
one iteration and (C) after 14 iterations. (a)-(c) show the corresponding 
power spectra (absolute values). 
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Figure 9. (A) Initial wave function (u = 34); and (B) target wave 
function. Both are numerically squared. 

Figure 10. (A) Wave function (numerically squared) at final time t f  
given the initial electric field. (B) Wave function (numerically squared 
and XlOOOO) at tf given the electric field after first iteration. (C) Wave 
function (numerically squared) at tf given the electric field after 37 
iterations. 

wavepackets in the "dissociating part" of the grid are shown in 
Figure 12. The values of the objective function and dissociation 
yield for the I2 dissociation are given in Table IV. In this case 
we find an enhancement of the objective function in the first 
iteration but a dramatic reduction in yield. This reduction is 
probably due to a bad choice of po given our initial guess for the 
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Figure 11. Simulation of the electric field from Figure 8C by use of three 
Gaussian pulses centered as in Figure 8C and with frequencies from 
Figure 8c. 
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Figure 12. Wave functions (numerically squared) at final time, given the 
electric fields: (A) after 37 iterations (same wave function as in Figure 
1OC); (B) the simulated field with three Gaussian pulses (shown in 
Figure 11); (C) using only the first two Gaussian pulses from the simu- 
lated field; and (D) using only the first and last Gaussian pulse from the 
simulated electric field. 

TABLE I V  Objective Function Values (( *@I*I)) and Dissociation 
Yield (J’~~’l*,(R)12 dR) for l2 Dissociationa 

iteration no. ( e&Pf) dissocn yield (*der) 
0 1.07 X 9.93 X lo4 0.988 
1 1.60 X 1.33 X lW’ 0.999 
10 4.22 X 6.22 X lW3 0.993 
20 1.08 X 1.14 X 0.998 
30 1.16 X 1.25 X 0.994 
37 1.14 X 1.22 X 0.997 
Simull 8.26 X 9.38 X lo” 0.989 

Simul3 4.72 X lW3 5.05 X 0.984 

OSimull is from the calculation with three Gaussian pulses; Simul2 
with the first two, and Simul3 with the first and last Gaussian pulse 
from the simulated field. 

Simul2 4.95 x 10-3 7.39 x 10-3 0.983 

electric field. By using other parameters for the initial electric 
field we could have obtained much better results after the first 
iteration. Note that almost as much yield is obtained with the 
three-pulse and two-pulse Gaussian simulations as with the 
partially optimized electric field. 

VI. Influence of Molecular Rotation on the Optimal Pulse 
Induced Dissociation Yield 

The calculations presented in the previous sections have ignored 
the influence of molecular rotation on the induced dissociation 
yield. This approximation is intuitively plausible for the time scale 
over which the pump and dump pulses, or the optimally shaped 
pulses, act. That time scale is, for the molecules considered in 
this paper, about 500 fs, whereas the characteristic time associated 
with a rotational transition, defined by the rotational constant of 
the molecule, is of the order of 50000 fs. Nevertheless, it is 
worthwhile examining the influence of molecular rotation on the 
control of selectivity of product formation. We report the results 
of such a calculation in this section. 

We illustrate the effects of rotational motion on the modulation 
of yield of photofragments for the case of 12. Our approach is 

TABLE V 
initial J 10 33 66 100 
reduction of yield, 96 0.3 1.8 5.4 10.2 

to calculate, using seoond-order perturbation theory, the population 
in the unbound region of the B state of 12. For our purposes it 
is satisfactory to use for the external field the three-pulse ap- 
proximation to the optimal pulse shape which was described in 
section V. In view of the shape of the optimized pulse, we treat 
the first pulse in the three-pulse field separately from the other 
two pulses. For the pulse sequence described in section V, the 
first pulse stimulates B - X emission, generating a wavepacket 
on the X-state potential energy surface. By virtue of the rotational 
selection rule AJ = f 1, transitions from a particular rovibrational 
component of the wavepacket on the B-state potential energy 
surface will be connected to the two corresponding (J + 1, J - 
1) rovibrational components of the wavepacket on the X-state 
potential energy surface, thereby creating a coherent superposition 
of these levels. The full wavepacket on the X-state surface is 
constructed by superposing the pairs of rovibrational levels gen- 
erated by transitions from all of the rovibrational components of 
the wavepacket on the B-state surface. We now ask if the rota- 
tional “unphasing” of this wavepacket materially affects the yield 
of photofragments generated by the external field. 

As already stated, we consider the external field to be con- 
structed of three sequential Gaussian pulses, the parameters of 
which were described in section V. The initial state is the full 
thermal distribution of rotational levels appropriate to the 
ground-state potential energy surface, imaged onto the u‘ = 34 
vibrational level of the B-state potential energy surface. The 
dissociation yield generated by the pulse sequence is calculated 
individually for each of the rotational levels in the initial state. 
Since these initial rotational sublevels are not coherently related 
to each other, no interference between them can occur; the total 
yield is an incoherent summation of the yields for each initial J 
state. In carrying out these calculations we used the potential 
energy curves described in section I1 and in section V. We have 
assumed AJ = f1 and that the Franck-Condon factors for 
transitions from J to J - 1 and J to J + 1 are equal; this is a very 
reasonable approximation for the levels with large J, which are 
the majority in the initial rotational Boltzmann distribution. The 
Franck-Condon factors from the intermediate bound states to the 
continuum were taken to be equal and then normalized to unity; 
this is a good approximation in the energy range of interest since 
the span of rovibrational level energies in the wavepacket is of 
the order of 300 cm-’ whereas, for the conditions envisioned, the 
kinetic energy of the photofragments is an order of magnitude 
larger. 

The results of the calculations just sketched are to be compared 
with the results of the similar calculations in which the effects 
of molecular rotation are neglected. Table V shows the change 
in photofragmentation yield from the value calculated when ro- 
tational motion is neglected as a function of rotational quantum 
number. 

The progressive degradation of the photofragment product yield 
as J increases is expected, since the energy difference between 
the levels generated by J - J + 1 and J - J - 1 increases as 
J increases. The consequence of this increase in energy is a beat 
frequency in the wavepacket evolution that increases as J increases, 
thereby also contributing to an increase in the unphasing rate. 
Nevertheless, as the entries in Table V show, the degradation of 
selectivity generated by the inclusion of molecular rotation effects 
is negligibly small for all practical purposes. Note that, at room 
temperature, the most populated rotational level is near J = 65, 
suggesting that we may expect 5% or less reduction in the predicted 
photodissociation yield as a result of rotational unphasing. 

VII. Final Remarks 
This paper has been concerned with an application of the theory 

of optimal control of selectivity of product formation in a chemical 
reaction to real, but simple, chemical reactions. We have shown 
that with currently achievable laser intensities and laser pulse 
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coherent pulse sequences as well as the use of numerical simu- 
lations of experiments must therefore be analyzed carefully in 
terms of phase coherence considerations! 
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Appendix A Full Optimal Control Methodology 
In this Appendix the equation for the optimal field is derived, 

starting with the modified objective functional given in section 
I11 and setting 67 = 0. The procedure is equivalent to the pro- 
cedure in refs 10,23, and 29 except that we carry out the analysis 
for an electric field with real values (as in ref 23) and not complex 
(as in refs 10 and 29). The objective functional is 

7 = <\k&Pf> + isff (<alia, - Q\k> - c.c.) dt + 
I n  

TABLE VI: HgAr Photodissociation Yield for Two Gaussian Pubes 

contrast energy density, pulse width yield 
fwhm, fs at 203 fs at 406 fs ratio mJ/cm2 

50 3.3 x 10-3 1.0 x IO+ 3300 0.54 
83 1.8 X IO-) 1.5 X 120 0.54 
120 1.7 X IO-' 1.0 X IO4 17 0.54 
170 8.9 X IO', 3.2 X 10-4 2.8 0.54 

widths it is possible to modulate the photofragmentation yield of 
HgAr and I2 Although we have not discussed the matter in the 
text of this paper, other calculations we have made, in connection 
with a design for carrying out the experiments described, show 
that the modulation of the yield is measurable. We have also 
shown that it is worthwhile calculating the pulse shape which gives 
maximum yield of photofragments, since that field can be simply 
approximated with a small number of Gaussian pulses. 

As an example of the practical considerations involved in these 
experiments, Table VI gives quantitative photodissociation yields 
for the HgAr system using a sequence of two Gaussian pulses. 
Note that, as the pulse width is increased, the contrast of the 
dissociation window pattern is rapidly degraded, suggesting that 
pulses shorter than 100 fs would be required. The absolute yield 
is quite large and under realistic experimental conditions is ex- 
pected to give a fluorescence signal level of roughly 10 000 pho- 
tons/s. The calculations of section V indicate that this yield and 
contrast could be increased by nearly 3 orders of magnitude by 
simply altering the duration, delay, intensity ratio, and frequencies 
of the two Gaussian pulses while maintaining the same total energy 
in the field! In the case of iodine, two optimized Gaussian pulses 
do not give an appreciable enhancement, but the simple addition 
of a third pulse does increase the yield by an order of magnitude. 
In both cases, enhanced reaction control is clearly possible with 
experimentally achievable laser fields. 

We expect that the kind of analysis described in this paper will 
be widely applicable to many chemical reactions. Although the 
general formalism is applicable to systems with any number of 
degrees of freedom, visualization of the wave packet dynamics 
is very difficult when the system has more than two degrees of 
freedom. One consequence of that difficulty is inhibition of the 
use of physical intuition to make simple physical approximations. 
We believe that it is worthwhile to develop approximate dynamical 
descriptions of systems with many degrees of freedom (e.g., re- 
action path representations) which will permit, in turn, develop- 
ment of useful approximations to the optimal control fields that 
generate particular products. 

Finally, it is appropriate to comment on the significance of 
recent experiments by Scherer et aL30 on phase control as a form 
of pulse shaping. In brief, that work showed that it is possible 
to lock the optical phases of two ultrashort laser pulses, and to 
use the resulting quantum interference effects to enhance (or 
reduce, depending on the choice of phase locking angle) the ex- 
citation efficiency of those pulses. Such work demonstrates how 
coherent interference effects could be used to even further enhance 
the efficiency of product formation in experiments such as de- 
scribed in this paper. In practice, however, those interference 
effects can only occur between excitations of the same frequency, 
whereas the experiments reported here typically require two pulses 
of different frequencies. Therefore, no quantum interference 
effects occur. It could, however, be possible to design multiple 
pulse sequences in which two or more phase-locked pulses of a 
single color are used for the pump and dump steps. In fact, the 
slight increase in reaction yield we have observed for three pulse 
sequences compared to two pulse sequences may be due to such 
effects. 

An additional important aspect of the phase locking concept 
is that mOst computer simulations of short pulse excitation assume 
phase coherent pulse sequences, whereas phase coherence is 
typically not achieved in the laboratory without the extensive 
efforts described by Scherer et al. The applicability of optimized 

(30) Scherer, N. F., et al. J .  Chem. Phys., in press. 

X[ Jff62(t) dt - E] (A.1) 
4 

<\k a> - 2 i M ( t )  lael 
We have made a partial integration in the last step. By use of 

y =  (t) 
@ =  (:;) 

(A.3) 

(A.4) 

and also the fact that the initial wave function is not varied, SO 
that &#(to) = 0, we get 
61 = (a\k(tf)lPl\k(tf)> + <\k(tf)&6\k(tf)> - 

<b\k(tf)(@(rf)> - <@(tf)169(rf)> + 
iJoff (<6\kJia, - @@> - c.c.) dt + 

iJoff ((<$&l&> + <$,lpI&> - c.c.) - 2iM(t))  66 dt 

(A.6) 
Demanding bf = 0 for all b q  gives us the equation of motion for 
the Lagrange multiplier @ 
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id,@ = h 64.7) 

which is the time-dependent SchrGdinger equation subject to the 
final condition 

which relates to 
we get 

l*(tf)> = Bl'k(tf)> (A.8) 

on the boundary. From 67 = 0 for all 66 

where 

00) = Im (<+,IccI~~> + <+,l~l4~>) (A.10) 

is called the overlap function, and X is determined from the energy 
constraint 

io" 6*(r) dr = E (A.11) 

Appendix B Restricted Optimal Control Methodology 
Let us now consider the case, when there are restrictions on 

the form of the electric field. As an example we consider the case 
that the field has only two pulses of a given form, as in the 
Tannor-Rice pump-dump scheme. Then 

Since 6 is a function of the parameter set {€I = { f l , 5 2 ]  = ( f t . . .  
ST,&.€!) we have 

Inserting (B.1) and (B.2) in (A.6) and demanding 61 = 0 for all 
6d (that are independent oft!), we find the following 2n equations 
to determine (€1: 
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a&, 
a# 2A6(r))-(t)  dt = 0; i = 1 ,  2; j = l...n (B.3) 

This set of coupled integral equations can be solved in different 
ways. We have chosen an iteration procedure involving the second 
derivative of 7. Using definition (A.10) for the overlap function 
we find 

i, k = 1 ,  2; j, / = l . . .n (B.4) 
The first term in this integral can be nonzero only when i = k. 
When the pulses are given as an analytical expression (as for a 
Gaussian pulse) we can also find analytical expressions for the 
needed first and second derivatives. Let 

and 
FijW = Sl/Sd (B.5) 

Then P is a vector with elements Fij and A is a matrix Eith 
elements Ai,,kl. For small changes in 5, 66, we can expand F i n  
a Taylor series 

(B.7) 
I f f  has an extrzmeyalue (maximum or minimum) at the extreme 
point io, then F = 0. If we are close to an extreme point, to, we 
have 

fit + 6€1 - fill + A 65 

G = f l + A 6 t o  (B.8) 

650 sz -A-'P (B.9) 
or 

Registry No. HgAr, 87193-95-1; I,, 33283-93-1; Hg, 7439-97-6; Ar, 
7440-37-1; I, 14362-44-8. 


